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Abstract: Nowadays statistical tools have become an indispensable part in biomedical studies. 
Logistic regression, a model describing and estimating the relationship between one dependent 
variable and one or more independent variables, is one of the most widely used statistical analyses in 
multivariable models in medical research. Researchers need to be fully aware of the function of 
research designs applied, the applicability of statistical tests used, and the validity of the conclusions 
drawn. However, due to little time devoted in statistical training, researchers in epidemiology are 
short of the ability in system analysis and mathematical reasoning. This could result in generating 
avoidable statistical mistakes and compromising the final finding. So, a corresponding review and 
analysis of the logistic regression is in need. This article provides a walkthrough for creating logistic 
regression model within the context of medical study. It starts with the introduction of the model’s 
definition and follows by the discussion of operation and caution in each step of its application 
including variable selection, model building, model validation, and output interpretation.  

1. Introduction 
The absence uses of statistical methods is nearly impossible in today’s medical literature for reading 

a clinical study or other medical research report [1]. Statistical methods extract information from 
research data and make valid inferences in a wider population based on the occurrence of events in the 
small group. Improper statistical methods will result in erroneous conclusions leading to unethical 
practice and thus should be avoided [2]. However, the inappropriate application of statistical methods 
to analyze research data is a common error found in the medical literature [3]. So, it is crucial for the 
researchers to have a basic understanding of commonly used statistical methods in order to reach 
accurate conclusions. Over the last two decades, logistic regression analysis has become an 
increasingly employed statistical method in medical research [4]. It is widely regarded as the statistic 
of choice for situations in which the occurrence of a binary outcome is to be predicted from one or 
more independent variables [5]. 

Logistic function was firstly invented in the 19th century by Belgian mathematician Pierre François 
Verhulst for the description of the growth of populations, and the course of autocatalytic chemical 
reactions [6]. Verhulst used the logistic curve as a growth curve for exhibiting the course of a 
proportion P over time t as Prose monotonically between the bonds of 0 and 1. It agreed very well with 
the actual course of the population of France, Belgium, Essex and Russia for periods up to 1833 [6]. 
Nowadays, because of its ability to build a linear relationship between the binary response and 
predictors by using a link function, it has been widely used in medical research, being used to predict 
the risk of developing a given disease based on observed characteristics of the patient. 

Logistic regression belongs to the family of generalized linear model (GLM). GLM is an advanced 
statistical modelling technique formulated by John Nelder and Robert Wedderburn in 1972 [7]. It 
allows researchers to build a linear relationship between the response and predictors by using a link 
function when their underlying relationship is not linear. Comparing with standard linear regression, 
GLM has relaxed the restrictions on independent variable and response variable for being able to be 
applied on a broader range of data: the random variable does not need to have the same probability 
distribution; the response variable does not need to be normally distributed; homoskedasticity (i.e., 
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constant variances) needs not be satisfied. With less assumptions are made to the data and the facts 
that most clinical outcomes are defined in binary form, logistic regression is more attractive than other 
linear regressions. 

In this paper, the components of and reporting requirements of the logistic regression model as 
applied in medical research are discussed and explained. It starts with a brief mathematical definition 
and transformation of the model; follows detailed discussion of the process of variable selection with 
special emphasis in sample size, dependent variable, and independent variable; then presents and 
evaluates the processes of model building, model validation and output interpretation in biomedical 
context. 

2. Logistic Regression 
Logistic regression is a model describing and estimating the relationship between one dependent 

variable and one or more independent variables. The dependent variable is normally binary taking only 
the value of 0 or 1; although, it can be extended to categorical variable with multiple classes in more 
complex models. The independent variables or predictors can be either binary or continuous (taken 
any real value). Log-odds, the log of the odds of being in one outcome category versus the other 
category, are introduced to resolve the discrepancy between the range of independent variables and 
the range of dependent variable. A linear relationship between the predictor variables and the log-odds 
is assumed, and the corresponding link function can be algebraically written as: 

𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑙𝑙𝑙𝑙𝑙𝑙 � 𝑝𝑝
1−𝑝𝑝

� = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + ⋯+ 𝛽𝛽𝑛𝑛𝑋𝑋𝑛𝑛             (1) 

Where, 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 are independent variables, 𝛽𝛽0 is the intercept, 𝛽𝛽1 …𝛽𝛽𝑛𝑛 are corresponding 
estimate parameters, and 𝑝𝑝 is the probability that the event occurs. The odds can be recovered by 
exponentiating the log-odds: 

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑝𝑝
1−𝑝𝑝

= 𝑒𝑒𝛽𝛽0+𝛽𝛽1𝑋𝑋1+𝛽𝛽2𝑋𝑋2+⋯+𝛽𝛽𝑛𝑛𝑋𝑋𝑛𝑛                       (2) 

With introduction of binary variable Y and further algebraic manipulation, the probability of the 
event becomes: 

𝑝𝑝 = 𝑃𝑃(𝑌𝑌 = 1| X) = 𝑒𝑒𝛽𝛽0+𝛽𝛽1𝑋𝑋1+𝛽𝛽2𝑋𝑋2+⋯+𝛽𝛽𝑛𝑛𝑋𝑋𝑛𝑛

1+𝑒𝑒𝛽𝛽0+𝛽𝛽1𝑋𝑋1+𝛽𝛽2𝑋𝑋2+⋯+𝛽𝛽𝑛𝑛𝑋𝑋𝑛𝑛
                   (3) 

This is the logistic function applied in the logistic regression. One can calculate the probability that 
the individual has the event of interest (𝑝𝑝) from the natural exponent (𝑒𝑒𝑒𝑒𝑒𝑒(𝑋𝑋)) of the sum of the 
product of each of the covariates (𝑋𝑋𝑖𝑖) and their corresponding parameter estimates (𝛽𝛽𝑖𝑖). The regression 
parameters produced by the logistic regression here,𝛽𝛽1 …𝛽𝛽𝑛𝑛, represent log-odds ratios. They indicate 
the amount of change expected in the log-odds for one-unit change in one predictor variable with all 
other variables hold constant. As the model itself models probability of output in terms of input, it has 
also been used to make a binary classifier for machine learning application. 

3. Application 
3.1 Variable Selection 
3.1.1 Sample Size. 

Sample size, which is usually represented by n, refers to the number of participants or observations 
included in a study. It influences the precision of estimates and the power of the study to draw 
conclusions. Larger sample sizes can present more accurate mean values, identify outliers that skew 
the data in a smaller sample, and provide a smaller margin of error. Margin of error, a statistic 
expressing the maximum deviation of the sample results from the real values, indicates how many 
percentage points the finding results will differ from the real population value and is inversely related 
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to the sample size. Therefore, determination of sample size requirement is important and necessary 
before conducting the analysis. 

The sample size requirement for logistic regression has been discussed in the literature. Peduzzi et 
al. propose that the minimum required sample size should be based on the rule of event per variable 
(EPV), and the concept of EPV of 10 is acceptable for logistic regression [8]. It suggests the logistic 
model should be used with a minimum of 10 events per predictor variable. For instance, the sample 
size of a model with 10 predictor variables should be at least 100 (100 = 10 × 10). According to 
Bujang et al., observation studies that involve logistic regression in the analysis are recommended a 
minimum sample size of 500 to derive statistics that can represent the parameters in the targeted 
population [9]. Moreover, they propose a simpler formula for sample size estimation particularly for 
logistic regression in observational studies. The formula is 𝑛𝑛 = 100 + 50𝑖𝑖 where 𝑖𝑖 refers to number 
of independent variables in the model. For sample with 10 independent variables, the sufficient sample 
size being able to make inference on the targeted population is 600 (600 = 100 + 50 × 10). 

3.1.2 Dependent Sample. 
In most cases, the outcome event or dependent variable is categorized into classes of having 

occurred or not having occurred. For example, diseased or disease free; dead or alive; positive or 
negative test are easily coded as either the outcome having happened or not having happened. In other 
cases, the dichotomous outcome may be derived from the censoring of continuous data. With a cut-
off criterion been produced and settled, the raw data are recoded from continuous or multi-category to 
binary at the cut-off point. The cases with well-established cut-off points can make the translation 
relatively easy. For example, a hepatitis C virus (HCV) ribonucleic acid (RNA) result greater than 
800,000 IU/L has been regarded as high viral load. However, the translation generally makes the 
situation of choosing the outcome variable more complicated and thus need detailed explanation and 
validation. 

3.1.3 Independent Sample. 
A major problem, also the key to success, when building a logistic regression model is to choose 

the correct independent variables to enter the model. A variable cannot feature in the final model if it 
is not selected for analysis. So, a detailed study of the literature related to the outcome variable is in 
need to include the full range of potential predictors. For being afraid of missing one significant 
variable, researchers may be tempted to include as many collected variables as possible in the model. 
However, too many independent variables in the model will lead to a mathematically unstable outcome 
and decreased generalizability beyond the study sample. The addition of unrelated variables has the 
tendency to inflate the apparent predictive validity of the final model. It can dilute true associations 
and display spurious associations between variables instead. So, the researchers must be very cautious 
with the selection of predictors’ variables to be included in the model. 

One important consideration during the variable selection process is the basic assumptions of 
logistic regression. The four basic assumptions must always be satisfied to conduct logistic regression. 
The first assumption is independence of observations and errors. The observations must be 
independent of each other, not coming from repeated or paired data. If one’s data include repeated 
measures or other correlated outcomes, errors will be similarly correlated, and the assumption is 
violated. A special attention should be paid to when dealing with time-series data, where the correlation 
between sequential observations can be an issue. 

The second assumption is linearity of independent variables and log-odds. The relationship between 
each continuous independent variable and respective logit-transformed outcome should be linear. The 
logit, also known as the log-odds, is the logarithm of the odds ratio discussed previously. One simple 
way for checking logit linearity is by visually inspecting the scatter plot between each predictor and 
the logit values. If the scatter plot shows a clear non-linear pattern of the variable related to its 
respective log-odds, then the assumption of log linearity is most likely violated. Another way for 
checking is Box-Tidwell test. It is effectively used by adding the non-linear transform of the original 
predictor as an interaction term to test if this addition made no better prediction. For example, for one 
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continuous independent variable age, the new interaction term age * ln (age) will be added to check 
for its statistically significance. If the interaction term is not statistically significant (i.e., p < 0.05), 
then the independent variable is linearly related to the logit of the outcome variable and the assumption 
is satisfied. 

The third assumption is lack of strongly influential outliers. With an unexpectedly large impact on 
model results, these problematic values can distort the outcome and accuracy of the model. Cook’s 
Distance has normally been used to determine the influence of a data point. With Cook’s Distance 
greater than 4/n where n is the number of observations, the observations are deemed as influential. 
Standardized residuals are used to determine the outlier. Data points with absolute standardized 
residual values greater than 3 represent possible extreme outliers. Observations that are identified as 
influential outliers should be removed or transformed.  

The final assumption is the absence of multicollinearity among independent variables. Collinearity, 
or multicollinearity, refers to the phenomenon in which one predictor variable in a multiple regression 
model is highly correlated with the other predictor and can be linearly predicted from it. Collinearity 
is a threat problem because it can reduce the precision of the estimated coefficients and weaken the 
statistical power of the regression model. When independent variables are correlated that changes in 
one variable are associated with shifts in another, it becomes difficult for the model to estimate the 
relationship between each independent variable and the dependent variable independently. It can lead 
to highly unstable and biased estimate of exposure effect and erroneous conclusions about significant 
or no significant individual predictors. Signs of collinearity include large standard errors with wide 
confidence intervals and large changes in estimated parameters of the affected predictors when small 
changes in data happened. Variable Inflation Factor (VIF), the ratio of the overall model variance to 
the variance of a model that includes only that single independent variable, has been used to measure 
the degree of multicollinearity. A VIF value that exceeds 5 indicates a problematic variable. Clinical 
and medical expertise can also be used to detect collinearity. For example, the body mass index (BMI) 
and waist circumference (WC) are some of the widely known risk factors for obesity related health 
outcomes existing significant correlation that may cause collinearity [10]. 

3.2 Model Building 
A model building strategy is closely linked to the selection of independent variables. The 

conventional technique is to first run the univariate analyses (the simplest form of analysing data with 
only one explanatory variable at a time) on all predictors and then run the multivariate model with 
variables that meet a pre-set cut-off for significance [11]. The pre-set cut-off for significance is often 
more liberal and relaxed than the conventional cut-off for significance, i.e., P ≤ 0.25 instead of the 
usual P < 0.05, since it is a pre-selection strategy aiming to identify potential predictor variables and 
no inference will be derived from this step. So, there is no need to worry about a rigorous p-value 
criterion at this stage. Indeed, this relaxed P-value criterion can help reduce the initial number of 
variables in the model while at the same time reduce the risk of missing important variables. While 
applying this conventional technique, researchers need to consider the scientific plausibility and the 
clinical meaningfulness of the association between independent variables. For instance, variables such 
as white hair and baldness may show significant result in association with the risk of occurrence of 
myocardial infarction using univariate analyses. However, these associations are due to the association 
with older age and male sex and hence must not be entered into the regression model. 

There are multiple statistical tools that can be used to evaluate the goodness-of-fit for the logistic 
regression model, such as likelihood ratio test, pseudo𝑅𝑅2 , and the Hosmer-Lemeshow test. The 
likelihood ratio test is performed by estimating two models and comparing the fit of one model to the 
fit of the other. It compares the likelihood of the data under the full model against the likelihood of the 
data under a model with fewer predictors. The null hypothesis holds the smaller model provides as 
good a fit for the data as the larger model. A p-value with less than 0.05 would provide evidence 
against the reduced model in favour of the current model. The most notable pseudo 𝑅𝑅2 in logistic 
regression is McFadden’s 𝑅𝑅2, which is defined as 1 − 𝑙𝑙𝑙𝑙(𝐿𝐿𝑚𝑚)/𝑙𝑙𝑙𝑙(𝐿𝐿0) with 𝐿𝐿𝑚𝑚 referring to the log 
likelihood value for the fitted model and 𝐿𝐿0 being as the log likelihood for the null model with only 
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an intercept as a predictor. Values closer to zero indicate the model has no predictive power and thus 
should not be used. The Hosmer-Lemeshow test is performed by dividing the predicted probabilities 
into subgroups (commonly 10) and then computing a Pearson’s Chi-square (𝜒𝜒2) that compares the 
predicted to the observed frequencies. It is used to examine whether the observed proportions of events 
are like the predicted probabilities of occurrence in subgroups of the model population. This suggests 
that suppose the observations in the first group (10 in total) have a predicted probability of 0.1, then if 
the model is correctly specified, the observed proportion who have Y=1 would be expected to be 10%. 
A significant p-value would indicate the poor fit. And it is not recommended to use this test when the 
sample size is small (i.e., n < 400) [12]. For example, Ozdemir et al. used Hosmer-Lemeshow test to 
evaluate and determine the logistic regression model and coefficients aiming for assess the effects of 
physical activity on quality of life, depression and anxiety levels during the COVID-19 outbreak [13].  

3.3 Model Validation 
Model validation, referring to the process of confirming that the logistic regression model can be 

extended to its intended population, is an important step. It argues the regression model does capture 
essential relationships in the domain of study rather than serves as an artifact. The process can be 
divided into internal and external validation based on the choice of its validation data set. If the model 
is developed with a sub-sample of observations and validated by the remaining sample, it is called 
internal validation. The commonly used methods for obtaining a good internal validation include the 
holdout method, K-fold cross-validation, and bootstrapping. External validation refers to the situation 
that the validity is tested with a new independent data set from the same population or from a similar 
population. If the model fits the new data set in different context, then there is some assurance of 
generalizability of the model. However, if the results of either internal or external validation fail, it is 
advisable to adjust the model as needed, or to explicitly define any restrictions for the model’s future 
use. 

Common statistical validation indexes include classification accuracy, specificity, sensitivity, and 
the area under receiver operating characteristic (AUC). Classification accuracy, equalling to the 
number of correct predictions divided the number of all predictions, measures the percentage of the 
correct prediction. Specificity, also known as the true negative rate (TNR), measures the degree to 
which the predictors correctly identify individuals not showing the particular outcome. Sensitivity, 
also known as the true positive rate (TPR), measures the degree to which the predictors correctly 
identify individuals showing the outcome. If the specificity and sensitivity of the model are both above 
80%, then it is likely that the tested model has validity. The receiver operating characteristic (ROC) 
curve is a graphical plot that illustrates the diagnostic ability of a binary classifier system as its 
discrimination threshold varies. It is plotted with TPR against the FPR. AUC represents the degree of 
separability and its capability of distinguishing between classes. Its values range from 0.50 to 1.00, 
with 0.5 reflecting random forecasts and 1.0 implying perfect forecasts. For example, to provide 
support for the validity of the nine important risk factors for lupus nephritis (LN) patients with 
hypothyroidism, Huang et al. calculated their model’s AUC value finding it to be 0.885 [14]. 

3.4 Output Interpretation 
Independent variables are usually presented as odds ratio (OR) in the output of the logistic 

regression model. It indicates how much the odds of a particular outcome change for a 1-unit increase 
in the independent variable. When a logistic regression is calculated, the regression coefficient (𝛽𝛽𝑖𝑖) is 
the estimated increase in the log-odds of the outcome per unit increase in the value of the exposure; 
and its exponentiated form (𝑒𝑒𝛽𝛽𝑖𝑖) is interpreted as OR. 

Odds are the ratio between probabilities: the probability of an event favourable to an outcome and 
the probability of an event against the same outcome. And odds ratio is the ratio of odds: the odds of 
an event in the treatment group to the odds of an event in the control group. It effectively represents 
the constant effect of an exposure on the likelihood that one outcome will occur, revealing the strength 
of the independent variable’s contribution to the outcome. Crude or unadjusted OR refers to the odds 
ratio for a logistic regression model with only one independent variable. For example, in Bari et al.’s 
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study of hepatitis C virus (HCV) infection, an OR of 2.6 for the variable armpit shave from barber in 
univariate analysis represents the odds of adult males with armpit shaving from barber been exposed 
to HCV are 2.6 times greater than the odds of those without (reference group) [15]. It is also equivalent 
to express that there is a (2.6 − 1.0) × 100% = 160% increase in the odds of being infected for 
adult males with armpit shaving versus those without. Adjusted OR refers to the OR that controls for 
the other predictor variables in the model, when the model includes multiple independent variables. It 
is aimed to understand how a predictor variable affects the odds of an event occurring after adjusting 
for the effect of other predictor variables. For example, with predictor variables age, therapeutic 
injections received in past 10 years and frequency of facial shave from barber included in the 
regression model, the adjusted OR of 2.9 represents the unique contribution of the variable armpit 
shave from barber to HCV infection with the other three variables holding at constant values. 

Interpretation of odds ratio is mistakable for mixing up with relative ratio (RR), another commonly 
used statistic for quantifying the relationship between variables. It is the ratio of the probability of an 
outcome in an exposed group to the probability of an outcome in an unexposed group. For instance, it 
is incorrect to state that the risk of infection for armpit shaving is 2.6 times greater. This is because 
OR tends to exaggerate the estimate of relationship between exposure and response than RR [16]. 
While the definition of RR is straightforward and intuitive making it preferable than OR, the failure of 
the calculation of risk in certain studies makes it be less used than OR. Specifically, the calculation of 
risk requires the use of “people at risk” as the denominator, but it is not always available in study as 
retrospective case-control study. Researchers should be careful in explaining the result to avoid stating 
false conclusion from correct mathematical results. 

Finally, the 95% confidence interval (CI) is routinely reported with OR to provide an estimate of 
its precision. The level of precision is inversely related with the width of CI. It can be used as a proxy 
for the presence of statistical significance by observing if it overlaps the null value (OR=1). For 
example, as the OR of 1.7 for past dental treatment in Bari’s study has a 95% CI of 0.9 to 3.1 spans 
1.0, researchers cannot state there exists definitive evidence that past dental treatment is a significant 
contributor to the infection of HCV. Further detailed research is needed for studying the effect of this 
independent variable on the outcome. 

4. Conclusion 
Logistic regression is an efficient and powerful tool allowing assessment of the relationship 

between one or more independent variables and a binary outcome. However, deficiencies such as 
sufficiently small ratio of the number of outcome events to predictor variables, lack of regression 
diagnostics or goodness-of-fit measures, and confusion of odds ratio and relative risk in the application 
of the model can compromise the accuracy the results. Therefore, researchers must pay considerable 
attention to the proper use of this powerful and sophisticated modelling technique and avoid simply 
putting raw data into the computer and jumping straightforward to conclusion. A basic understanding 
of the model’s background and mathematical definition; special attention to the selection process of 
sample size, dependent variable and independent variable; and the operation of model building, model 
validation and output interpretation in biomedical context are in need for a more thorough research 
study. In future, a more direct and rigorous evaluation model of the existed clinical data is expected. 
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